In Stock
Dostępne
mniej niż 10 sztuk.
|
Product info / Cechy produktu:
Rodzaj (nośnik) / Item type
|
książka / book
|
Dział / Department
|
Książki i czasopisma / Books and periodicals
|
Autor / Author
|
Ankur A. Patel
|
Tytuł / Title
|
Praktyczne uczenie nienadzorowane przy użyciu języka Python
|
Podtytuł / Subtitle
|
Jak budować użytkowe rozwiązania uczenia maszynowego na podstawie nieoznakowanych danych
|
Język / Language
|
polski
|
Wydawca / Publisher
|
Promise
|
Rok wydania / Year published
|
2022
|
Tytuł originału / Original title
|
Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from Un
|
Języki oryginału / Original lanugages
|
angielski
|
|
|
Rodzaj oprawy / Cover type
|
Miękka
|
Wymiary / Size
|
17.0x23.0 cm
|
Liczba stron / Pages
|
362
|
Ciężar / Weight
|
0.5850 kg
|
|
|
Wydano / Published on
|
7/22/2020
|
ISBN
|
9788375414264 (9788375414264)
|
EAN/UPC
|
9788375414264
|
Stan produktu / Condition
|
nowy / new - sprzedajemy wyłącznie nowe nieużywane produkty
|
Osoba Odpowiedzialna / Responsible Person
|
Osoba Odpowiedzialna / Responsible Person
|
Book in Polish by Ankur A. Patel. Wielu ekspertów branżowych uważa uczenie nienadzorowane za kolejną granicę w dziedzinie sztucznej inteligencji, która może stanowić klucz do pełnej sztucznej inteligencji. Ponieważ większość danych na świecie jest nieoznakowana, nie można do nich zastosować konwencjonalnego uczenia nadzorowanego. Z kolei uczenie nienadzorowane może być stosowane wobec nieoznakowanych zbiorów danych w celu odkrycia istotnych wzorców ukrytych głęboko w tych danych, które dla człowieka mogą być niemal niemożliwe do odkrycia.
Autor Ankur Patel pokazuje, jak stosować uczenie nienadzorowane przy wykorzystaniu dwóch prostych platform dla języka Python: Scikit-learn oraz TensorFlow (wraz z Keras). Dzięki dołączonemu kodowi i praktycznym przykładom analitycy danych będą mogli identyfikować trudne do znalezienia wzorce w danych i odkrywać dogłębne zależności biznesowe, wykrywać anomalie, przeprowadzać automatyczną selekcję zmiennych i generować syntetyczne zbiory danych. Wystarczy znajomość programowania i nieco doświadczenia w uczeniu maszynowym, aby zająć się:
• Porównywaniem mocnych i słabych stron różnych podejść do uczenia maszynowego: uczenia nadzorowanego, nienadzorowanego i wzmacnianego.
• Przygotowywaniem i zarządzaniem projektami uczenia maszynowego.
• Budowaniem systemu wykrywania anomalii w celu wychwycenia oszustwa dotyczącego kard kredytowych.
• Rozdzielaniem użytkowników na wydzielone i jednorodne grupy.
• Przeprowadzaniem uczenia pół-nadzorowanego.
• Opracowywaniem systemów polecania filmów z użyciem ograniczonych automatów Boltzmanna.
• Generowaniem syntetycznych obrazów przy użyciu generujących sieci antagonistycznych.
„Badacze, inżynierowie i studenci docenią tę książkę pełną praktycznych technik uczenia nienadzorowanego, napisaną prostym językiem z nieskomplikowanymi przykładami w języku Python, które można szybko i skutecznie implementować.”
–Sarah Nagy
Główny analityk danych w firmie Edison
Ankur A. Patel jest wiceprezesem ds. informatyki analitycznej w firmie 7Park Data, wspieranej przez firmę inwestycyjną Vista Equity Partners. W firmie 7Park Data, Ankur i jego zespół analizy danych wykorzystują dane alternatywne do opracowywania produktów związanych z danymi dla funduszy hedgingowych i korporacji oraz rozwijają usługi uczenia maszynowego dla klientów firmowych.