Newsletter

Otrzymuj jako pierwszy informacje o nowościach i promocjach!

Email:
Wyrażam zgodę na otrzymywanie oferty handlowej. Więcej
To pole jest wymagane
Akceptuję regulamin
To pole jest wymagane

Nasz newsletter wysyłany jest zwykle raz na miesiąc.

TinyML. Wykorzystanie TensorFlow Lite do uczenia maszynowego na Arduino i innych mikrokontrolerach

Pete Warden , Daniel Situnayake

TinyML. Wykorzystanie TensorFlow Lite do uczenia maszynowego na Arduino i innych mikrokontrolerach
Dostępny
Dostępne mniej niż 10 sztuk.

Zobacz dostępne formy płatności.

 
Product info / Cechy produktu
Rodzaj (nośnik) / Item type książka / book
Dział / Department Książki i czasopisma / Books and periodicals
Autor / Author Pete Warden , Daniel Situnayake
Tytuł / Title TinyML.
Podtytuł / Subtitle Wykorzystanie TensorFlow Lite do uczenia maszynowego na Arduino i innych mikrokontrolerach
Język / Language polski
Wydawca / Publisher Helion
Rok wydania / Year published 2022
Tytuł originału / Original title TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers
Języki oryginału / Original lanugages angielski
   
Rodzaj oprawy / Cover type Miękka
Wymiary / Size 16.8x23.7 cm
Liczba stron / Pages 432
Ciężar / Weight 0,5300 kg
   
Wydano / Published on 22.02.2022
ISBN 9788328383623 (9788328383623)
EAN/UPC 9788328383623
Stan produktu / Condition nowy / new - sprzedajemy wyłącznie nowe nieużywane produkty
Book in Polish by Pete Warden, Daniel Situnayake. Może się wydawać, że profesjonalne systemy uczenia maszynowego wymagają sporych zasobów mocy obliczeniowej i energii. Okazuje się, że niekoniecznie: można tworzyć zaawansowane, oparte na sieciach neuronowych aplikacje, które doskonale poradzą sobie bez potężnych procesorów. Owszem, praca na mikrokontrolerach podobnych do Arduino lub systemach wbudowanych wymaga pewnego przygotowania i odpowiedniego podejścia, jest to jednak fascynujący sposób na wykorzystanie niewielkich urządzeń o niskim zapotrzebowaniu na energię do tworzenia zdumiewających projektów.

Ta książka jest przystępnym wprowadzeniem do skomplikowanego świata, w którym za pomocą techniki TinyML wdraża się głębokie uczenie maszynowe w systemach wbudowanych. Nie musisz mieć żadnego doświadczenia z zakresu uczenia maszynowego czy pracy z mikrokontrolerami. W książce wyjaśniono, jak można trenować modele na tyle małe, by mogły działać w każdym środowisku - również Arduino. Dokładnie opisano sposoby użycia techniki TinyML w tworzeniu systemów wbudowanych opartych na zastosowaniu ucze nia maszynowego. Zaprezentowano też kilka ciekawych projektów, na przykład dotyczący budowy urządzenia rozpoznającego mowę, magicznej różdżki reagującej na gesty, a także rozszerzenia możliwości kamery o wykrywanie ludzi.

W książce między innymi:

praca z Arduino i innymi mikrokontrolerami o niskim poborze mocy
podstawy uczenia maszynowego, budowy i treningu modeli
TensorFlow Lite i zestaw narzędzi Google dla TinyML
bezpieczeństwo i ochrona prywatności w aplikacji
optymalizacja modelu
tworzenie modeli do interpretacji różnego rodzaju danych

Ograniczone zasoby? Poznaj TinyML!

O autorach

Pete Warden jest współzałożycielem zespołu do spraw TensorFlow. Obecnie zajmuje się platformą TensorFlow dla mobilnych systemów operacyjnych i systemów wbudowanych. Wcześniej był założycielem firmy Jetpac, przejętej przez Google w 2014 roku.

Daniel Situnayake wspiera programistów TensorFlow w Google. Jest współzałożycielem firmy Tiny Farms, która jako pierwsza w Stanach Zjednoczonych zautomatyzowała proces uzyskiwania białka z owadów na skalę przemysłową.

Osoba odpowiedzialna za wprowadzenie produktu na rynek Unii Europejskiej / die für das Inverkehrbringen des Produkts auf dem Markt der Europäischen Union verantwortliche Person / Responsible Person

HELION S.A.
ul. KOŚCIUSZKI 1C
Gliwice 44-100
PL
[email protected]

Producent/Hersteller/Manufacturer

Informacje dotyczące bezpieczeństwa / Sicherheitsinformationen / Safety Information

Nie dotyczy
Tagi produktowe

 Tip: Type the quantity (default is 1) and click "Add to cart" button to order online.